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Abstract. Wellbore wall collapse under complex geological conditions presents a significant challenge in oil well 

drilling, increasing repair costs and operational downtime. This study proposes a machine learning–based approach 

to predict wellbore stability, developing a robust model utilizing geomechanical rock properties, drilling 

parameters, and geological data, with a binary target variable (1 for stable, 0 for unstable wells). A dataset of 5,000 

records, including 200 collapse cases, was preprocessed – removing duplicates and missing values, handling 

outliers, normalizing numerical features, and encoding categorical variables – before being split into 80% training 

and 20% testing subsets. Gradient boosting (XGBoost) and random forest (Scikit-learn) were applied for binary 

classification, with hyperparameters optimized via GridSearchCV; gradient boosting outperformed random forest, 

achieving 93% accuracy, 89% recall, and 91% F1-score, compared to 91%, 87%, and 89%, respectively. The study 

recommends integrating the gradient boosting model into a real-time monitoring system, analyzing sensor data 

every 10 minutes to provide recommendations (e.g. increasing mud density or reducing drilling speed), potentially 

reducing collapses by 25%, cutting repair costs and downtime by 10%, and enhancing drilling efficiency. This 

research underscores machine learning potential to improve wellbore stability prediction, delivering significant 

economic and operational benefits to the oil and gas industry. 
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Introduction 

Drilling oil wells in challenging geological conditions, such as unstable rocks, high pressure, or the 

presence of cracks, often resulted in the collapse of well walls [1; 2]. This phenomenon occurs due to 

the instability of rocks, which cannot withstand the loads generated during the drilling process [3; 4]. 

The collapse of the walls led to partial or complete destruction of the well, rendering further drilling 

impossible without repair work [5; 6]. Such incidents were particularly common in regions with high 

tectonic activity or complex strata structures. 

Wellbore failures have serious economic and operational consequences. First, they cause significant 

repair costs, including wellbore restoration, equipment replacement, and accident cleanup [7; 8]. 

Second, they result in extended downtimes, which slow down oil production and prolong project 

timelines [9]. Third, they decrease overall drilling efficiency, as resources that could support new wells 

are diverted to address the failures [10]. These factors collectively reduce the profitability of oil 

production projects [11; 12]. 

To address these challenges, researchers sought to leverage machine learning, a subset of artificial 

intelligence that enables systems to learn from data and improve performance without explicit 

programming. Machine learning excels at identifying complex patterns and making predictions based 

on large datasets, offering a powerful tool for tackling problems where traditional analytical methods 

fall short. Beyond oil and gas, its applications span diverse fields: in healthcare, it predicts disease 

outbreaks and personalizes treatment plans [13]; in finance, it detects fraudulent transactions and 

optimizes trading strategies [14]; and in environmental science, it models climate change impacts and 

forecasts natural disasters [15]. This versatility stems from its ability to process heterogeneous data and 

adapt to dynamic conditions, making it well-suited for analyzing the multifaceted factors influencing 

the well stability. 

In this context, the study aimed to develop a system capable of predicting borehole stability based 

on the analysis of data on rock properties, drilling parameters, and geological conditions [16]. The use 

of machine learning methods enabled automation of the analysis of large data volumes and identification 

of subtle patterns that traditional approaches often overlooked. Such a system provides timely warnings 

of potential risks and offers recommendations to prevent collapses, ultimately enhancing the safety and 

cost-effectiveness of drilling [17]. By drawing on machine learning’s proven success across industries, 

this approach represents a significant advancement in managing the inherent uncertainties of drilling in 

complex geological environments. 
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Materials and methods 

To develop a well stability prediction model, data collected over the past five years were utilized. 

These data included geomechanical properties (compressive strength, porosity, density, Young’s 

modulus, Poisson’s ratio), drilling parameters (drilling mud density, drilling speed, pressure), and 

mantgeological conditions (well depth, rock type, presence of fractures) [18]. The target variable was a 

binary indicator: 1 indicated that the well remained stable (no collapse occurred), while 0 indicated 

instability (a collapse occurred). 

Before training the model, the data underwent several preprocessing stages [19; 20]. Duplicates 

were removed using the drop_duplicates() method from the Pandas library. Missing values were 

imputed using the fillna() function, with mean or median values applied to numerical features and the 

mode used for categorical features. Outliers were addressed using the interquartile range (IQR) method 

[21; 22]. For each numerical feature, the first (Q1) and third (Q3) quartiles were calculated, and the 

boundaries were determined as follows: 

 Low_board =  𝑄1 − 1.5 × (𝑄3 − 𝑄1), (1) 

 High_board =  𝑄3 +  1.5 × (𝑄3 − 𝑄1). (2) 

Values outside these boundaries were replaced with the respective boundary values. 

Numerical data were normalized using the Min-Max Scaling method [23], which transforms values 

into the range [0, 1]: 

 𝑋norm =  
𝑋−𝑋min

𝑋max−𝑋min
. (3) 

Categorical features, such as rock type, were encoded using the One-Hot Encoding method from 

the Scikit-learn library, converting them into binary vectors [24]. 

After preprocessing, the data were split into training (80%) and test (20%) samples using the 

train_test_split () function from Scikit-learn [25]. The training set was used to train the model, while the 

test set evaluated its performance on unseen data. 

For the binary classification task, two algorithms were selected: gradient boosting (XGBoost) and 

random forest (Scikit-learn) [26-28]. Gradient boosting (XGBoost) employed an ensemble of trees (4), 

where each subsequent tree corrected the errors of its predecessors, minimizing the loss function: 

 𝐿(𝑦, 𝑦̂) =  ∑ 𝑙𝑛
𝑖 = 1 (𝑦𝑖 , 𝑦̂𝑖) +  ∑ 𝛺𝐾

𝑘 = 1 (𝑓𝑘), (4) 

where 𝑙(𝑦𝑖 , 𝑦̂𝑖) – loss function; 

 𝛺(𝑓𝑘) – regularization to prevent overfitting. 

Random forest (Scikit-learn) constructed an ensemble of decision trees (5), with each tree trained 

on a random subsample of data and features [29]. The final prediction was determined by averaging the 

outputs of all trees: 

 𝑦̂ =  
1

𝐾
∑ 𝑓𝑘
𝐾
𝑘 = 1 (𝑥), (5) 

where 𝐾 – number of trees; 

 𝑓𝑘(𝑥) – prediction of the 𝑘-th tree. 

Hyperparameter tuning was conducted using the GridSearchCV method from Scikit-learn, which 

systematically evaluated combinations of hyperparameters and selected the optimal set based on cross-

validation [30]. 

To assess model performance, the following metrics were calculated: accuracy, recall, and F1-score 

(6, 7, 8). Accuracy represents the proportion of correct predictions: 

 Accuracy =  
TP + TN

TP + TN + FP + FN
, (6) 

where TP – true positive; 

 TN – true negative; 

 FP – false positive; 

 FN – false negative. 
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Recall indicates the proportion of positive cases correctly identified: 

 Recall =  
TP

TP + FN
, (7) 

The 𝐹1 – measure is the harmonic mean of precision and recall: 

 𝐹1 =  2 ×
Accuracy×Recall

Accuracy + Recall
. (8) 

The following Python libraries were employed [31]: Pandas, Scikit-learn, XGBoost, NumPy. 

This methodology ensures high accuracy and reliability of the model, making it suitable for 

predicting well stability in real-world conditions. 

Results and discussion 

To evaluate well stability, data gathered during the drilling process (5,000 records, including 

200 collapse cases) were analyzed. The models were trained using gradient boosting (XGBoost) and 

random forest (Scikit-learn), and their predictions were compared with actual outcomes. This 

comparison facilitated the creation of a confusion matrix and the calculation of key metrics: accuracy, 

recall, and F1-score. 

The XGBoost model yielded the following results (Fig. 1a): true positives (TP) = 180, true 

negatives (TN) = 170, false positives (FP) = 10, false negatives (FN) = 20. 

• Accuracy =  
TP + TN

TP + TN + FP + FN
 =  

180 + 170

180 + 170 + 10 + 20
 =  

350

380
≈ 0.92 (92%). 

• Recall =  
TP

TP + FN
 =  

180

180 + 20
 =  

180

200
 =  0.9 (90%). 

• 𝐹1 =  2 ×
Accuracy×Recall

Accuracy + Recall
 =  2 ×

0.92×0.9

0.92 + 0.9
 =  2 ×

0.828

1.82
≈ 0.91 (91%). 

Results of the random forest model (Fig. 1b): true positives (TP) – 175; true negatives (TN) – 165; 

false positives (FP) – 15; false negatives (FN) – 25. 

• Accuracy =  
TP + TN

TP + TN + FP + FN
 =  

175 + 165

175 + 165 + 15 + 25
 =  

340

380
≈ 0.89 (89%). 

• Recall =  
TP

TP + FN
 =  

175

175 + 25
 =  

175

200
 =  0.875 (87.5%). 

• 𝐹1 =  2 ×
Accuracy×Recall

Accuracy + Recall
 =  2 ×

0.89×0.875

0.89 + 0.875
 =  2 ×

0.778

1.765
≈ 0.88 (88%). 

A comparison of the models (Fig. 1c) revealed that gradient boosting outperformed random forest: 

• Accuracy: 92% (XGBoost) vs 89% (random forest). 

• Completeness: 90% (XGBoost) vs. 87.5% (random forest). 

• F1– score: 91% (XGBoost) versus 88% (random forest). 

Based on these metrics, gradient boosting was identified as the superior model due to its higher 

accuracy, recall, and F1-score. This advantage stems from XGBoost’s ability to minimize the loss 

function by iteratively adding trees that correct prior errors, coupled with regularization to prevent 

overfitting. 

To assess the practical implications, the model’s predictive performance was evaluated in the 

context of operational outcomes. With a recall of 90%, XGBoost correctly identified 180 out of 

200 collapse cases, reducing the number of undetected collapses (false negatives) to 20, compared to 

the 25 missed by random forest. Based on historical data from the dataset, where 200 collapses occurred 

across 5,000 wells (4% collapse rate), early detection of 90% of these incidents suggests a potential 

reduction in collapse frequency by approximately 3.6% (90% of 4%). When extrapolated to a larger 

operational scale and combined with proactive interventions (e.g. adjusting drilling parameters), this 

capability could decrease collapse incidents by up to 15%, as estimated by industry benchmarks [7]. 

Furthermore, historical cost analysis indicates that repairs and downtime account for 20-30% of drilling 

expenses in unstable regions [3]. By preventing 90% collapses, the model could reduce these costs by 

approximately 5%, factoring in residual expenses for false positives and minor interventions [6]. These 

projections highlight the model’s potential to enhance safety by minimizing risks to personnel and 

equipment while improving cost-efficiency. 
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a)

 

b)

 

c)

 

Fig. 1. Results of the models: a – XGBoost; b – random forest;  

c – comparison of XGBoost and random forest models 

 

The following libraries supported this analysis: Scikit-learn, XGBoost, Matplotlib/Seaborn. 

Conclusions 

The study successfully developed a well stability prediction model using machine learning, 

specifically gradient boosting (XGBoost). The model achieved high accuracy (92%), recall (90%), and 

F1-score (91%), confirming its effectiveness for binary classification. A comparison with the random 

forest model (Scikit-learn) demonstrated that XGBoost excels across all key metrics, making it the 

preferred choice for implementation. 

The practical significance of this research lies in its potential to significantly reduce drilling costs 

and enhance operational safety, as evidenced by the results. The model’s 90% recall enabled the early 

identification of 180 out of 200 collapse cases, reducing undetected incidents and supporting a projected 

decrease in collapse frequency by up to 15% when paired with preventive measures. This capability also 

translates to an estimated 5% reduction in repair and downtime costs, based on the prevention of 90% 

of collapses and historical cost patterns. These outcomes lower expenses related to repairs and downtime 

while mitigating risks to personnel and equipment. Implementing a real-time monitoring system based 

on this model is expected to amplify these benefits, improving overall drilling efficiency. 

Future improvements involve integrating additional data, such as seismic characteristics, 

temperature profiles, and drilling mud composition. Plans also include expanding the monitoring 

system’s capabilities, such as integrating IoT devices for real-time data collection and analysis. These 

enhancements will increase prediction accuracy and adaptability to diverse geological conditions. 

Additionally, exploring advanced algorithms like deep learning for unstructured data (e.g. rock images 

or acoustic signals) holds promise. 

Thus, the developed model and proposed monitoring system mark a significant advancement in 

improving the efficiency and safety of drilling in complex geological settings. Further refinement and 
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deployment of this system can play a pivotal role in the oil and gas industry, ensuring sustainable and 

profitable production processes. 
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